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7.7 IMPLICATIONS OF REAL FLUID BEHAVIOR

Example 7.6 Derivatives of the Peng-Robinson equation

Determine (a}’) ( 7 T’ ( U) for the Peng-Robinson equation.

Solution: The derivatives (¢U/&V)y and (6Cp/ 6V)T have been written in terms of measur-
able properties in Examples 6.6 and 6.9, respectively, and have been evaluated for an ideal gas.
The analysis with the Peng-Robinson model provides more realistic representation of the prop-
erties of real substances. Beginning with the same analytical expressions set forth in the refer-
enced examples, a key derivative is obtained for the Peng-Robinson equation,

RTp _ ___ ap? (fl’) - _Rp _ p? da
(1-bp) 1+2bp-b2p? ey  1=bp 142bp-b2p?dT

I r? | which approaches the ideal gas limit: lim (?;;J =Rp = 1—; The volume dependence of Cy
Gma % 8,=0ASIBISI 5 is obtained by the second derivative: » >0 "¢V
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which approaches the ideal gas limit of zero at low density,
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which also approaches the ideal gas limit of zero at low density. We have thus shown that C
depends on volume. To calculate a value of Cj; first we determine C¥ = Cjf — R, where Cjf is
the heat capacity tabulated in Appendix E. Then, at a given {P, T}, the equation of state is solved
for p. The resultant density is used as the limit in the following integrals, noting as V' — o, p —
0, and dV = —dp/p*: This method is used for departures from ideal gas properties in Chapter 8.
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Example 6.6 Accounting for 7 and V impacts on energy

Derive an expression for (%%) in terms of measurable properties. (a) Evaluate for the ideal gas.
T

(b) Evaluate for the van der Waals equation of state, P = RTAV — b) — a/V.

Solution: Beginning with the fundamental relation for dU,

dU=TdS - PdV
Applying the expansion rule
BU) & c
o =M= -Pl= 4
({W T 7(651;) T P(E}D T 643
Using a Maxwell relation and a basic identity
auy _ 9By _
-a-‘-;)r =1 6;):» P 6.46
(a) For an ideal gas, P =RT/V
) B () RT ,
(5911 7 ), 7 PO (ig)
Thus, internal energy of an ideal gas does not depend on volume (or pressure) at a given 7.
(b) For the van der Waals equation,
(‘3_ - R (3_‘7) - RT _(_RT _iz) =4 (ig)
ey  V-b" \&V/p -b \V-b V 2

Example 6.9 Volumetric dependence of Cy, for ideal gas

Determine how C-depends on volume (or pressure) by deriving an expression for (¢C,/GV) r
Evaluate the expression for an ideal gas.

Solution: Following hint #1 and applying Eqn. 4.30:

¢, =%

By the chain rule:

ac S\ 76 5
(.- (@), (3,

Changing the order of differentiation:

(6‘CV
Vir

For an ideal gas, P = RT/¥, we have (g;) in Example 6.6:
il 4

AGD,), =D, -
eT\aT yly — eT\W/y

Thus, heat capacity of an ideal gas does not depend on volume (or pressure) at a fixed tempera-
ture. (We will reevaluate this derivative in Chapter 7 for a real fluid.)

(ig) 6.51




To avoid this calculation, we devise an equivalent pathway of three stages. First, imagine if we
had a magic wand to turn our fluid into an ideal gas. Second, the ideal gas state change calculations
would be pretty easy. Third, at the final state we could turn our fluid back into a real fluid. Depar-
ture functions represent the effect of the magic wand to exchange the real fluid with an ideal gas.
Being careful with signs of the terms, we may combine the calculations for the desired result:

AU = Uy=U, = (Uy=Uy* )+ (U, = U5 )= (U, - U/¥) 8.5

The calculation can be generalized to any fundamental property from the set {U H A4,GS}, using
the variable M to denote the property

AM = My—M, = (My—M,"®) + (M,"8 —M ") = (M, - M,®) 8.6

The steps can be seen graphically in Fig. 8.2. Note the dashed lines in the figure represent the cal-
culations from our “magic wand” effect of turning on/off the nonidealities.

Real Fluid Properties Ideal Gas Properties
T, TP 7
(T},Py) (TLP) yp
- —
le
P
o — — — — -
M,
T T

Figure 8.2 lustration of calculation of state changes for a generic property M using departure
Sunctions where Mis U, H, §, G or A.

Departure func-
tions permit us to
use the ideal gas
calculations that are
easy, and incorpo-
rate a departure
property value for
the initial and final
slates.



dU'¢ = Ci%dT

Cl= CF+R

dH'® = C}$dT

ds€ = (C#/T)dT—(R/P)dP

8.7



8.2 INTERNAL ENERGY DEPARTURE FUNCTION
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Figure 8.3 Comparison of real fluid and ideal gas isotherms at the same temperature,
demonstrating the departure function, and the departure function at fixed TV,

between the two departure characterizations. When we refer to the departure of the real fluid prop-
erty and the same ideal gas property at the same {7, P}, we call it simply the departure function,
and use the notation U — U™, When we compare the departure at the same {7V} we call it the
departure function at fixed T,V and designate it as (U — Uy



V V

U(T, V) - U(T, ) = IdU = J’(‘-)- dv 8.8
v/ g
20 20
For an ideal gas:
V V .
US(T, V) - US(T, =) = IdU = I(‘l- Eav 8.9
v/ ¢
20 20

Since the real fluid approaches the ideal gas at infinite volume, we may take the difference in these
two equations to find the departure function at fixed TV,

V
(U-U)1v- (U170 = I[(%)r‘ (%—, ;g]dV 8.10

V’x
U-U* = (U-U rp = (U-US1r—0E - 0 y=w-Um— [ () v 511
W=V =W-UNrv - - Uy )= w-UHrve- [ (5)°
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ad
U-U"* = (U-U 1 =(U-US1vr-(Us - }‘;,)=(U—Uig)rv—f(%') v 8.11

¢

4

V

We have already solved for (8U*/@V) - (see Example 6.6 on page 238), and found that it is
equal to zero. We are fortunate in this case because the internal energy of an ideal gas does not
depend on the volume. When it comes to properties involving entropy, however, the dependency on
volume requires careful analysis. Then the systematic treatment developed above is quite valuable.

ouy ‘25)_ (Q_l./)“
(a\({)T 7(ary poand 157,

Making these substitutions, we have

U- Uit = I[{g—g V—P]dV 8.13

8.12




e

_ 7%
Uu-U- _ I[__-- J-B - -j'r( 8.14
RT PRT pR\GT. ,,p

0

The above equation applies the chain rule in a way that may not be obvious at first:

(@), - ey rn rre e ;s
TV V V RpTz cT pR cT. v

1. Write the derivative of the property with respect to volume at constant 7. Convert to deriv-
atives of measurable properties using methods from Chapter 6.

2. Write the difference between the derivative real fluid and the derivative ideal gas.

3. Insert integral over d¥ and limits from infinite volume (where the real fluid and the ideal
gas are the same) to the system volume V.

4. Add the necessary correction integral for the ideal gas from ¥ to F*%. (This will be more
obvious for entropy.)

5. Transform derivatives to derivatives of Z. Evaluate the derivatives symbolically using the
equation of state and integrate analytically.

6. Rearrange in terms of density and compressibility factor to make it more compact.



Example 8.1 Internal energy departure from the van der Waals equation

Derive the internal energy departure function for the van der Waals equation. Suppose methane is
compressed from 200 K and 0.1 MPa to 220 K and 60 MPa. Which is the larger contribution in
magnitude to AU, the ideal gas contribution or the departure function? Use Cp from the back flap
and ignore temperature dependence.

p-RT _a_ pRT _, . . 1 a

a = -
b 2 1-bp (I—bp) RT

Solution: For methane, @ = 230030 J-cm*/mol® and b = 43.07 cm’/mol were calculated by the
critical point criteria in Example 7.7 on page 271. Deriving the departure function,
—NdZ/dT)p = —ap/RT, because the repulsive part is constant with respect to 7. Substituting,

= molar density =

p=_.a.£
0 RT

RT p RT)" RT
0 0

Because 7, > | there is only one real root. A quick but crude computation of p is to rearrange as
Zbp = bP/RT = bp/(1 — bp) — (a/bRT)(bp)>.

Ut (2 22 - fapte - g - a2
0

At state 2, 220 K and 60 MPa,
60°43.07/(8.314-220) = hpi(1 — bp) — 230030/(43.07-8.314-220)(hp)>.

Taking an initial guess of hp = 0.99 and solving iteratively gives bp = 0.7546, so
(Uy— Uy®)RT=-230030-0.7546/(43.07-8.314-220) = -2.203.

At state 1, 200 K and 0.1 MPa,

0.1-43.07/(8.314-200) = bp/(1 — bp) — 230030/(43.07-8.3 l4-200)(bp)2.

Taking an initial guess of hp = 0.99 and solving iteratively gives hp = 0.00290, so
(U, - U,#)/RT =-230030-0.00290/(43.07-8.314-200) = —0.0093 1.

_ — ig ig ig ig
AU = U,-U, = (U,-U," )+ (U,* -U " )-(U,-U")

AU =-2.203(8.314)220 + (4.3 — 1)-8.314(220 — 200) + 0.00931(8.314)200 = —4030 + 549 + 15
= —3466 J/mol. The ideal gas part (549) is 14% as large in magnitude as the State 2 departure
function (—4030) for this calculation. Clearly, State 2 is not an ideal gas.




8.3 ENTROPY DEPARTURE FUNCTION

Ve
S—S‘g=(5—9'g)rV—I(gV dv 8.16
.
v | Ve N
S‘*"I[(“) -(57); Jar- I (;,SJ - [[67),-G2), Jor- [ GD) /@
oo V

8.17
: JdPy& R o . : _
Since 57 - 7 we may readily integrate the ideal gas integral (note that this is not zero
;/'
whereas the analogous equation for energy was zero):
V
; c R V
— Sig = — — - co— .
5-5 I[(Fg; V]dV Rin—— 8.18
€20 3 R
U-us = I[T(:_‘;—‘;) V_P}IV
Recognizing V€ = RT/P. V/V*¥ = PV/RT =Z, =
V Pl
- J'[R 55, V]dV InZ j' T(ai)p z 1)] 24z 819
°° 0 - ez A I 5,7

where Eqn. 8.15 has been applied to the relation for the partial derivative of P



O vopores 8:4 OTHER DEPARTURE FUNCTIONS

for Uand S are the

building blocks from  The remainder of the departure functions may be derived from the first two and the definitions,
which the other de-

partures can be . - o o
written by combin- H= U+pV:>H_H!&= L_L¢&+PV_RT= U_b‘&+Z—l

ing the relations de- RT RT RT RT

rived in the previous ie — ie 8.20
sections. 4=0U- TS:>A—A _uv-u¢ _§-8§

RT RT R

where we have used PV = RT for the ideal gas in the enthalpy departure. Using H — H'® just derived,

G-G% _ H-H% §-§%
RT RT R

8.21



8.5 SUMMARY OF DENSITY-DEPENDENT FORMULAS

Formulas for departures at fixed 7 P are listed below. These formulas are useful for an equation of
state written most simply as Z = f{T.p) such as cubic EOSs. For treating cases where an equation of
state is written most simply as Z = (7, P) such as the truncated virial EOS, see Section 8.6.

U"" I 7[ 8.22

@._S_‘é’) j'[ 7{—- -(Z-l)] +1InZ 8.23

I T[ ] 7 8.24

2

gA—A"&'):j'(Z—l) _
RT > dp—1InZ 8.25
0
P
(G—G*‘s’)ZJ‘(Z—l) (71—
T > dp+(Z-1)—InZ 8.26

0



Useful formulas at fixed 7,V include:

. P
A— A8 _
oDy j'(zp Dap 8.27

RT
0

(S- s'&)rv [T[az} _(Z- } dp 828
p



8.6 PRESSURE-DEPENDENT FORMULAS

Occasionally, our equation of state is difficult to integrate to obtain departure functions using the
formulas from Section 8.5. This is because the equation of state is more easily arranged and inte-
grated in the form Z = /(7 P), such as the truncated virial EOS. For treating cases where an equation
of state is written most simply as Z = f{7,p) such as a cubic EOS, see Section 8.5. We adapt the pro-
cedures given earlier in Section 8.2,

1. Write the derivative of the property with respect to pressure at constant 7. Convert to deriv-
atives of measurable properties using methods from Chapter 6.

2. Write the difference between the derivative real fluid and the derivative ideal gas.

3. Insert integral over dP and limits from P = 0 (where the real fluid and the ideal gas are the
same) to the system pressure P.

4. Transform derivatives to derivatives of Z. Evaluate the derivatives symbolically using the
equation of state and integrate analytically.

5. Rearrange in terms of density and compressibility factor to make it more compact.

We omit derivations and leave them as a homework problem. The two most important depar-
ture functions at fixed 7P are

P
H-Hl‘g) 7{? dP
=_|71=) = 8.29
( RT .[ éT/p P 2
0

P

(59 - Jfe-ne1( ]2

0




8.7 IMPLEMENTATION OF DEPARTURE FORMULAS

Example 8.2 Real entropy in a combustion engine

A properly operating internal combustion engine requires a spark plug. The cycle involves adia-
batically compressing the fuel-air mixture and then introducing the spark. Assume that the fuel-
air mixture in an engine enters the cylinder at 0.08 MPa and 20°C and is adiabatically and revers-
ibly compressed in the closed cylinder until its volume is 1/7 the initial volume. Assuming that no
ignition has occurred at this point, determine the final 7'and P, as well as the work needed to com-
press each mole of air-fuel mixture. You may assume that Cj# for the mixture is 32 J/mole-K
(independent of 7), and that the gas obeys the equation of state,

PV=RT+ aP

where « is a constant with value a = 187 cm?/mole. Do not assume that Cy is independent of p.
Solve using density integrals.

Solution: The system is taken as a closed system of the gas within the piston/cylinder. Because
there is no flow, the system is irreversible, and reversible, the entropy balance becomes

d§ _ Mot taout s 2187 =0 8.31
d: &en
. SYS$

oult

showing that the process is isentropic. To find the final 7and P, we use the initial state to find the
initial entropy and molar volume. Then at the final state, the entropy and molar volume are used
to determine the final 7 and P.

This example helps us to understand the difference between departure functions at fixed Tand V'
and departure functions at fixed 7 and P. The equation of state in this case is simple enough that
it can be applied either way. It is valuable to note how the In(Z) term works out. Fixed T'and V'is
convenient since the volume change is specified in this example, and we cover this as Method I,
and then use fixed 7 and P as Method II.




This EOS is easy to evaluate with either the pressure integrals of Section 8.6 or the density inte-
grals of Section 8.5. The problem statement asks us to use density integrals.” First, we need to
rearrange our equation of state in terms of Z = f (T, p). This rearrangement may not be immedi-
ately obvious. Note that dividing all terms by RT gives PV/RT = 1 + aP/RT. Note that Vp= 1.
Multiplying the last term by Vp, Z =1 + aZp which rearranges to

Also, we find the density at the two states using the equation of state,

_ P
P RT+aP

Method I In terms of fixed T and V(ri) =0; Z-1=

(S—S iz) (5=5%)ry _

8-
= R[]n(] —_

AS/R =0=-0.04357 + 32/8.314'In(7,/293.15) = In(7) + 0.00611 =0 = T, =4908 K

= p, = 3.257E-5 gmole/cm® = p, = 2.280E-4 gmole/cm’

187-2.28E-4) + {(Cp/RIN(T,/ T;) + In(Vy /¥;)} — In(1 — 187-3.257E-5)]

| PV=RT+aP
|l —ap

7z =

|  l—ap _ _ap
p l—ap l—-ap 1-ap
/_)
[ 1{62} (Z—l)} = = In(1- ap)
0 ds¢ = (C}#/T)dT - (R/P)dP

Si=(8- S'”)W2+(S£g i B Sg)nz,




Example 8.2 Real entropy in a combustion engine (Continued)

Method IT. In terms of T and P,

o

S-5%) _ (7 271, e

R _j_ 71:37'_ (z l):|p+h'|Z
0

”

-a ap InZ = In(l —ap)+In —ap 0

0

Since the departure is zero, it drops out of the calculations.

§,-8§,= S‘zg - S‘lg = Cpln(T 2/ T1) —RIn(P,/P,). However, since we are given the final vol-
ume, we need to calculate the final pressure. Note that we cannot insert the ideal gas law into the
pressure ratio in the last term even though we are performing an ideal gas calculation; we must
use the pressure ratio for the real gas.

RT, RT,

v, -
its _a] = (CF—R)ln(Tz/Tl)—Rln(Vz_D

AS = CpIn(T,/T, )—Rln[

Now, if we rearrange, we can show that the result is the same as Method I:

|l —apy

1 —ap,

= RIn(1 —ap,)+ CpyIn(T,/Ty)+ RIn(V, /¥, )—RIn(1 —ap,)

AS = CyIn(Ty/Ty)+ RIn(V,/ V) +R1n(

This is equivalent to the equation obtained by Method I and T; = 490.8 K.

RT
Finally, P, = —% = —221308)__ — 0972 MPa

a—a 1228107 - 187
W = AU = (U- U8),+ C,AT— (U~ Ui8); = 0+C,AT-0 = 6325 Jimole

a. The solution to the problem using pressure integrals is left as homework problem 8.7.



[H—H'
RT

) o) &

(589 - fle-0e() )%

Example 8.3 Compression of methane using the virial equation

Methane gas undergoes a continuous throttling process from upstream conditions of 40°C and 20
bars to a downstream pressure of | bar. What is the gas temperature on the downstream side of

the throttling device? An expression for the molar ideal gas heat capacity of methane is
Cp=19.25+0.0523 T+ 1.197E-5 T>-1.132E-8 T*; T [=] K; Cp [=] I'mol-K

The virial equation of state (Eqns. 7.6-7.10) may be used at these conditions for methane:
Z=1+BP/RT=1+(B"+wB")P, T,

where B” = 0.083 - 0422/T," ¢ and B' = 0.139 - 0.172/7,*2

Solution: Since a throttling process is isenthalpic, the enthalpy departure will be used to calcu-
late the outlet temperature.

=0 = = ig ig ig ig
AH =0=H,-H, = (H,-H,")+(H,"—H,;")—(H,—H,")
The enthalpy departure for the first and third terms in parentheses on the right-hand side can be

calculated using Eqn. 8.29. Because Z(P,T), we use Egn. 8.29. For the integrand, the temperature
derivative of Z is required. Recognizing B is a function of temperature only and differentiating,

G, = 35, - a3

Inserting the derivative into Eqn 8.29,

() - IR[(”J Tl

8.29

(H—I-f P(B dB)
RT R T dT
<10 ) 8.32
(S—_S’“) _ P dB
R R dT




We can easily show by differentiating Eqns. 7.8 and 7.9,

dB" _ 0.6752 dB! _ 0.7224
ar, 7 dT, 752

Substituting the relations for B”, B', dB"/dT, and dB'dT, into Eqn. 8.32 for the departure func-
tions for a pure fluid, we get

(H; ?’ _ _Pr[l.wzz_o.oss . 0.8934_0.139” 033
pen U
_ &
(s Rs‘ ) _ —P,[O'W: +a;0'7222] -
e

For the mitial state, 1,

(F=2=) = 0110 (5~ ), =287 Jimole

Assuming a small temperature drop, the heat capacity will be approximately constant over the
interval, Cp = 36 J/mole-K.
For a throttle, AH =0 = (H— H%), + 36(T, — 40) + 287 = 0.
Trial and error at state 2 where P =1 bar, T, = 35°C = —13 + 36(35 — 40) + 287 = 94.
T, =30°C = —13 + 36(30 — 40) + 287 =-87

Interpolating, 7, = 35 + (35 — 30)/(94 + 87)(-94) = 32.4°C, another trial would show this is close.




Example 8.4 Computing enthalpy and entropy departures from the

Peng-Robinson equation

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy and entropy.

Solution: For propane, 7= 369.8 K; P, = 4.249 MPa; @ = 0.152. The heat capacity coefficients
are given by A =—4.224, B = 0.3063, C = —1.586E-4, D = 3.215E-8. We may use the spreadsheet
Preos.x1sx or PreosPropsMenu.m. If we select the spreadsheet, we can use the PROPS page to cal-
culate thermodynamic properties. Using the m-file, we specify the species ID number in the func-
tion call to PreosPropsMenu.m and find the departures in the command window. We extract the
following results:

For State 2:

Z=10.889058  F{cm®/mol) = 1369.45 (H—- H#) (Jmol)= —1489.87
(U— U*%) (Jfmol) = —1062.65 (§— 5%y (Jmol-K)= -2.29246
For State 1:

Z=0.957388  F{cm*/mol) = 6020.28 (H—H®) (Jmol)= —400.512
(U— U™ (Jimol) = —266.538 (S—§%) (Jimol-K)= -0.708254

Ignoring the specification of the reference state for now (refer to Example 8.8 on page 320 to see
how to apply the reference state approach), divide the solution into the three stages described in
Section 8.1: I. departure Function; TI. ideal gas; IT1. departure function.




The overall solution path for H,— H, 1s

AH = Hy—H, = (Hy—H,* )+ (H,® —H{*)—(H,-H,")
Similarly, for §;, - §, =
= - iz ig g ig
AS = 8§,-8, = (5,85 )+(5° —§,°)-(5,-5%)
The three steps that make up the overall solution are covered individually.
Step I. Departures at state 2 from the spreadsheet:

(Hy— H#)=—-1490 J/mol

(8, — S )=-2.292 Jmol-K

Step II. State change for ideal gas: The ideal gas enthalpy change has been calculated in Exam-
ple 2.5 on page 60.

Hj® — H % = 8405 T/mol
The ideal gas entropy has been calculated in Example 4.6 on page 151:
S — 5% =6.613 Jimol-K
Step ITI. Departures at state | from the spreadsheet:
(H, — H{%¥ )= —401 Jmole
(S; — S{% )= -0.708 J/mole-K
The total changes may be obtained by summing the steps of the calculation.

AH =-1490 + 8405 + 401 = 7316 J/mole
AS =-2.292 + 6.613 + 0.708 = 5.029 J/mole-K




Example 2.5 Enthalpy change of an ideal gas: Integrating CP‘U(T)

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy using the ideal gas law.

Solution: The ideal gas change is calculated via Eqn. 2.41 and is independent of pressure. The
heat capacity constants are obtained from Appendix E.

'F 2
Hi _ i =I CpdT = J' (A+BT+CT*+DT)dT =
Tl Tl

~ 4T -1+ Any- T+ Hn- T+ 2y 1Y)

=—4.224(463.15 — 378.15) + 0‘3363

3215107
3

(463.15%-378.15%) +

—1.586x10™

3 (463.15-378.15%) +

(463.15" - 378.15%) = 8405 J/mol

Example 4.6 Ideal gas entropy change: Integrating Cpig(I)

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy using the ideal gas law.

Solution: Because P and T are specified in each state, the ideal gas change is calculated most eas-
ily by combining an isobaric temperature step, Eqns. 4.19, and an isothermal pressure change,
Eqn. 4.22. The heat capacity constants are obtained from Appendix E.

) ) TZC"-’ P
S _ st =.[ S ar_mnl2, I (A+BT+CT +D'f)d7
r, T 1 r,

T,
SiE —SfE = Aln( )+B(T2 T)+-(T2—T)+ Dir3_r3- Rln;—)—-
l 1

4
=-42241n 463 :: +0.3063(463.15 — 378.15) + —l—""sgﬂ—(%s.lsz
8
3215%10 25

-378.15%) + — (463.15° - 378.15%) - 8. 314In 7 =6.613 J/mol-K




Example 8.5 Enthalpy departure for the Peng-Robinson equation

Obtain a general expression for the enthalpy departure function of the Peng-Robinson equation.

Solution: Since the Peng-Robinson equation is of the form Z(Tp), we can only solve with den-
sity integrals.

1 (ap)/(RT)
(l—bp) (14 2bp+ (=b2p2))

_T(g%’)p T +(2|;;?Zﬁ2p2)[:7"21+' g’?‘]]

where da/dT is given in Eqn. 7.18. Inserting,

T(aZJ [—a acK af}}
(1+2bp b2p2) bRT  bRT

We introduce F(7,) as a shorthand.

{92y o ____bp
T(a?') p (1+2bp-— b2p2)F(T")

Also, B=bP/RT = bp = B/Z and A=aP/R°T" = a/bRT = A/B. Note that the inte-
gration is simplified by integration over bp (see Eqn. B.34).

I( 7{32))_(@_ -[(1+2bp b p?) T)‘%&) )

HT)r (1-J2\(bp(1 +42)+ 1N1?° _ F(T) r1+(1+./2)b
[ (1+ﬁ)(bﬁ(1iﬁ):|)] B ln[li(liﬁ)bﬂ




Q§_§%) I[ (z—w)] +1InZ

L—Q I T[ Z]p-;‘;’ﬁhz-l

P

L“1;*‘;"9=J’@-'-12af-lnz
RT P
0

p
(G‘_Gig) =J‘(-‘-Z4:l-)-d +(Z-1)=1nZ
RT > p+( )
0

8.23

8.24

8.25

8.26



HT)r 1= 2 bp1 +J2y+ 1127 (1) r14(1+./2)b
[ (1+./§)(}:;(liﬁ):l)] R ln[li(liﬁ)bﬂ

bP
B RT _ azy dbp) _ (1) rz+(1+4J2)B
O _ &1 _p _
Z P p:I T(a;?{)p bp J8 '"[2+(|—J§)B]

(H- %) _ Z_1+_l_( —a_ 4K ) [z+(1+ﬁ)3]
RT J8“BRT  bRT Z+(1-.J2)B

gH‘_Hig)=Z_1_ 4 (1+Kﬂl Z+(1+.J2)B 2
RT B./8 Ja [z+(1-ﬁ)3] 33




Example 8.6 Gibbs departure for the Peng-Robinson equation

Obtain a general expression for the Gibbs energy departure function of the Peng-Robinson equation.

7 _ 1 ap/RT
(1-bp) (142bp-b2p?)

Solution: The answer is obtained by evaluating Eqn. 8.26. The argument for the integrand is

7 1=t __1=-bp __ (ap)/RT __ _bp ap/RT
I-bp 1-bp (1+2bp-b2p?) (1-bp) (1+2bp-b2p?)

Evaluating the integral (similar to the integral in Example 8.5), noting again the change in inte-
gration variables,

bp bp bp

J- (z_l)dgbg) _ [dbp) , _a d(bp)
bp (1-bp) BRTJ (14 2bp-b2p?)
0 0

0

A=Ay _ 0@ T1H(1+2)bp
RT n(1-bp) bRTﬁn[l+(l—ﬁ)bp}

Making the result dimensionless,

(G-G*) _ A ln[z+(1 +J2) C 36

Z-1-1n(Z-B)-
RT n( )Bﬁz Z+(1-.J2)B




Example 8.7 U and S departure for the Peng-Robinson equation

Derive the departure functions for internal energy and entropy of the Peng-Robinson equation.
Hint: You could start with Eqns. 8.22 and 8.23, or you could use the results of Examples 8.5 and
8.6 without further integration as suggested by Eqn. 8.20 and Eqn. 8.21.

Solution: By Eqn. 8.20, the U/ departure can be obtained by dropping the “Z — 1" term from Eqn.
8.35. We may immediately write:

U-Uie _ xﬁ]l [Z+ (1+ fz)B] 017

RT Bﬁ;[ Jo Z+(1-42)B

By Eqn. 8.21, the entropy departure can be obtained by the difference between the enthalpy
departure and Gibbs energy departure, available in Eqns. 8.35 and 8.36. Then, we may immedi-
ately write

8.38

S— Sig - In(z-B)--4- k‘,ﬁ’ Z+(1+J§)B
R BJéJa "lz+-42)B




O vopores 8:4 OTHER DEPARTURE FUNCTIONS

for Uand S are the

building blocks from  The remainder of the departure functions may be derived from the first two and the definitions,
which the other de-

partures can be . - o o
written by combin- H= U+pV:>H_H!&= L_L¢&+PV_RT= U_b‘&+Z—l

ing the relations de- RT RT RT RT

rived in the previous ie — ie 8.20
sections. 4=0U- TS:>A—A _uv-u¢ _§-8§

RT RT R

where we have used PV = RT for the ideal gas in the enthalpy departure. Using H — H'® just derived,

G-G% _ H-H% §-§%
RT RT R

8.21



8.8 REFERENCE STATES

Therefore, to specify a reference state for a real fluid, we need to specify:
Pressure
Temperature

In addition we must specify the state of aggregation at the reference state from one of the
following:

1. Ideal gas
2. Real gas
3. Liquid
4. Solid

Further, we set S, = 0, and either (hut not both) of Uy and Hy to zero. The principle of using a refer-
ence state is shown in Fig. 8.4 and is similar to the calculation outlined in Fig. 8.2 on page 303.

Real Fluid Properties Ideal Gas Properties
(Tr:Pr) —(M — M%), (TrPr)
® = |“(thisstep omitted for |

ideal gas ref state)

T T

Figure 8.4 [llustration of calculation of state changes for a generic property M using departure

Junctions where M is U, H, §, G, or A. The calculations are an extension of the
principles used in Fig. 8.2 where the initial state is designated as the reference state.



8.8 REFERENCE STATES

If we wish to calculate state changes in a property, then the reference state is not important, and all
reference state information drops out of the calculation. However, if we wish to generate a chart or
table of thermodynamic properties, or compare our calculations to a thermodynamic table/chart,
then designation of a reference state becomes essential. Also, if we need to solve unsteady-state
problems, the reference state 1s important because the answer may depend on the reference state as
shown in Example 2.15 on page 81. The quantity Hp — Up = (PV)p 1s non-zero, and although we
may substitute (PV)p = RTj for an ideal gas, for a real fluid we must use (PV), = ZyRT,, where Z,
has been determined at the reference state. We also may use a real fluid reference state or an ideal
gas reference state. Whenever we compare our calculations with a thermodynamic chart/table, we
must take into consideration any differences between our reference state and that of the chart/table.

Real Fluid Properties Ideal Gas Properties
(Tg:Pg) ~(M — M%), (TrPr)
¢ |l == - — — — e

(this step omitted for
ideal gas ref state)

T T

Figure 8.4 Illustration of calculation of state changes for a generic property M using departure
Junctions where M is U, H, S, G or A. The calculations are an extension of the
principles used in Fig. 8.2 where the initial state is designated as the reference state.



Example 2.15 Adiabatic expansion of an ideal gas from a leaky tank

An ideal gas is leaking from an insulated tank. Relate the change in temperature to the change in
pressure for gas leaking from a tank. Derive an equation for AU for the tank.

Solution: Let us choose our system as the gas in the tank at any time. This will be an open,
unsteady-state system. There is no inlet stream and one outlet stream. The mass balance gives
dn=—dn™

We can neglect kinetic and potential energy changes. Although the gas is expanding, the system
size remains unchanged, and there is no expansion/contraction work. The energy balance
becomes (on a molar basis):

d(nl) = Hi"ﬁn_ﬁnmd"om*'/@*"}tgc'*ggs

Since the enthalpy of the exit stream matches the enthalpy of the tank, H*“ = H.
d(nU) = —H°¥'dn°% = Hdn. Now H depends on temperature, which is changing, so we are
not able to apply hint 4(a) from the problem-solving strategy. It will be necessary to combine
terms before integrating. By the product rule of differentiation, the left-hand side expands to
d(nU) = ndU+ Udn . Collecting terms in the energy balance,

ndU = (H-U)dn

Performing some substitutions, the energy balance can be written in terms of 7and n,

C
(H-U) = PV = RT; dU= CudT; :Tyd—;=‘i—" (ig)
C—ylnz =mZ i
R 7., ni (*ig)

The volume of the tank is constant, (}"= constant); therefore,

_ Pp_Cv 1
- = T v ] w— = —ll'l—,
n TP r p R 7

substituting,

Example 2.15 Adiabatic expansion of an ideal gas from a leaky tank

(Continued)

Recognizing the relation between Cy- and Cp, defining y=C p/ C, (=1.4 for an ideal diatomic
gas),note R/Cp = (Cp—Cp)/Cp = 1-(1/)=(y— 1)/ y:

r (PG -0/
L-(7 -7

Through the ideal gas law (PF = RT), we can obtain other arrangements of the same formula.

(*ig) 2.71

(1/y)-1 . Ti/T = (v Vi);//(;/—l

. Pt 1/ . -7 : )
ViV = (;.) ; PUYP = (V/VYY = (TV/T) (*ig) 2.72
The numerical value for the change in internal energy of the system depends on the reference
state because the reference state temperature will appear in the result:

AU = n{(C AT - Tp) + Up) ~n' (C AT = Tp) + Up) (*ig)

(ig)

(*ig)

33



8.8 REFERENCE STATES

Real Fluid Properties Ideal Gas Properties
(Tg:Pg) ~(M — M%), (TrPg)
¢ - ~ (this step omitted for |

ideal gas ref state)

T T

Figure 8.4 [llustration of calculation of state changes for a generic property M using departure
Junctions where M is U, H, S, G, or A. The calculations are an extension of the
principles used in Fig. 8.2 where the initial state is designated as the reference state.

Real Fluid Properties Ideal Gas Properties
(TI’PI) —(M - sz)1 (Tl’Pl) J‘/fig
¢ —|-——————4+ - — — — —
M,
P P
(M- M%),
ot — — — — | ——— = - — — — — .
sz “4‘2&'
T T

Figure 8.2 Illustration of calculation of state changes for a generic property M using departure
Sunctions where M is U, H, §, GG or A.




Ideal Gas Reference States

For an ideal gas reference state, to calculate a value for enthalpy, we have

T
H = (H-H)p p+ | CpdT+H}§ 8.39

TR

T

1 CP P v
S = (S—S€) p+ I—dT—Rln-—- + 58 8.40
» T Py
TR

where the reference state value, S, Rg , may be set to zero. From these results we may calculate other

Real Fluid Reference State
For a real fluid reference state, to calculate a value for enthalpy, we adapt the procedure of Eqn. 8.5:
T
H = (H-Hg)p p+ ICPdT—(H— Hig)p + H, 8.41
7‘R

For entropy:

T
. Cp P .
S = (S-Si&)p p+ j?dT—RlnF-—(S—S‘&')R +S, 8.42
R
TR



Changes in State Properties

Tl
AH = (H-H®)p p + ICPdT—(H— H)r p

Tl
To calculate entropy changes:

TZ
. C P .l
AS = (S-Si®)p, p + I—%’dr-mn]-)%-(s—sq‘; .
1 1
Tl

8.43

8.44



Example 8.8 Enthalpy and entropy from the Peng-Robinson equation

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy and entropy. What fraction of the total change is due
to the departure functions at 190°C? The departures have been used in Example 8.4, but now we
can use the property values directly.

Solution: For propane, T, = 369.8 K: P, = 4.249 MPa; and @ = 0.152. The heat capacity coeffi-
cients are given by 4 = —4.224, B = 0.3063, C = —-1.586E-4, and D = 3.215E-8. For Preos.xlsx,
we can use the “Props™ page to specify the critical constants and heat capacity constants. The
reference state is specified on the companion spreadsheet “Ref State.” An arbitrary choice for
the reference state is the liquid at 230 K and 0.1 MPa. Returning to the PROPS worksheet and

specifying the desired temperature and pressure gives the thermodynamic properties for VU, H,
and S.

State nK) P(MPa) F(cm® /mole) U(Jimole) H(J/mole) S(T'mole-K)
2 463.15 2.5 1369 33478 36902 109.15
1 378.15 0.5 6020 26576 29587 104.13

The changes in the thermodynamic properties are AH = 7315J/mole and AS = 5.024J/mole-K,
identical to the more tediously determined values of Example 8.4 on page 314. The purpose of
computing the fractional change due to departure functions is to show that we understand the
roles of the departure functions and how they fit into the overall calculation. For the enthalpy,
the appropriate fraction of the total change is 20%, for the entropy, 46%.




Example 8.4 Computing enthalpy and entropy departures from the
Peng-Robinson equation

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy and entropy.

Solution: For propane, 7, = 369.8 K; P = 4.249 MPa; @ = 0.152. The heat capacity coefficients
are given by A =—4.224, B = 0.3063, C = —1.586E-4, D = 3.215E-8. We may use the spreadsheet
Preos.xIsx or PreosPropsMenu.m. If we select the spreadsheet, we can use the PROPS page to cal-
culate thermodynamic properties. Using the m-file, we specify the species ID number in the func-
tion call to PreosPropsMenu.m and find the departures in the command window. We extract the
following results:

For State 2:

Z=0889058  F{cm®/mol) = 1369.45 (H- H#%) (Jimol)=  —1489.87
(U~ U*%) (Jfmol) = —1062.65 (S—S§%) (Jmol-K)= -2.29246
For State 1:

Z=0.957388  ¥{cm*/mol) = 6020.28 (H—H?) (Jmol)=  —400.512

(U— U%) (Jfmol) = ~266.538 (S—§%) (Jmol-K)= -0.708254

Ignoring the specification of the reference state for now (refer to Example 8.8 on page 320 to see
how to apply the reference state approach), divide the solution into the three stages described in
Section 8.1: I. departure Function; II. ideal gas; ITI. departure function.

The overall solution path for A, - H, is

AH = Hy—Hy = (Hy—Hy® )+ (Hy* —H{*)—(H,-H{%)
Similarly, for §, - §, =
= = ig g _gig ig
AS = §,-8, = (5,8, )+(5° —§,°)-(5,-5)
The three steps that make up the overall solution are covered individually.
Step I. Departures at state 2 from the spreadsheet:

—H&y=—
(Hy— H¥)=~1490 J/mol

(8, - S )=-2.292 Iimol-K

Step II. State change for ideal gas: The ideal gas enthalpy change has been calculated in Exam-
ple 2.5 on page 60.

H% — H % = 8405 J/mol
The ideal gas entropy has been calculated in Example 4.6 on page 151:
S — 5% =6.613 Jimol-K
Step ITI. Departures at state | from the spreadsheet:
(H, — H{# )= —401 Jimole
(S, — 5{# ) =—0.708 T'mole-K
The total changes may be obtained by summing the steps of the calculation.

AH = —1490 + 8405 + 401 = 7316 J/mole
AS=-2.292 + 6.613 + 0.708 = 5.029 J/mole-K




Example 8.9 Liquefaction revisited

Reevaluate the liquefaction of methane considered in Example 5.5 on page 213 utilizing the
Peng-Robinson equation. Previously the methane chart was used. Natural gas, assumed here to be
pure methane, is liquefied in a simple Linde process. The process is summarized in Fig. 8.5.
Compression is to 60 bar, and precooling is to 300 K. The separator is maintained at a pressure of
1.013 bar and unliquefied gas at this pressure leaves the heat exchanger at 295 K. What fraction
of the methane entering the heat exchanger is liquefied in the process?

Precooler )—lL 3 (6 MPa, 300 K)
Compressor g E
|

(Heat Exchanger
7

I
I
Throtﬂe Valve:
I

Flash Drun‘i
\

6 (0.1 MPa, 111K) _/

Figure 8.5 Linde liquefaction schematic.



Example 5.5 Liquefaction of methane by the Linde process

Methane is to be liquefied in a simple Linde process. The feed and recycle are mixed, compressed
to 60 bar, and precooled to 300 K. The vapor then passes through a heat exchanger for additional
cooling before being throttled to 1 bar. The unliquefied fraction leaves the separator at the satura-
tion temperature, and passes through the heat exchanger, then exits at 295 K. (a) What fraction of
the gas is liquefied in the process; and (b) what is the temperature of the high-pressure gas enter-
ing the throttle valve?

Solation: The schematic is shown in Fig. 5.12. To solve this problem, first recognize that states
3, 6,7, and 8 are known. State 3 is at 300 K and 60 bar; state 6 is saturated liquid at 1 bar; state 7
is saturated vapor at | bar; and state 8 is at 295 K and 1 bar. Use the furnished methane chart
from Appendix E.

(a) The System I energy balance is: ff; — [gHg + (1 = g)Hg] =0

~Hy-Hg  1(60,300) — H(1, satl) 1130 - 284

=
47 Wy, TH(1,295) H(l,satL) 1195284

= 0.9286 = 7.14% liquefied

(b) The energy balance for System IT is: Hy — Hy = ~g(Hy — Hy) = ~0.9286(1195 — 796.1)
=-370.5 = Hy= 780

= Hy=T780 (@ 60 bar = chart gives -95°F =203 K

Flash Drum

~" Two-Phasc Region S~
/ S

Liquid
Prodnct

Figure 5.12 Linde liguefaction process schematic. The system boundaries shown on the left are
used in Example 5.5.



State 8

Current State Roots Stable Root has a lower fugacity
T (K) 295 z \Y fugacity H ) S
P (MPa) 0.1013 cm*/gmol MPa Jimol Jimol J/molK
& for 1 root region 0.9976741 24156.607| 0.101064 883.5888 -1563.476 35.86881
State 6
Current State Roots Stable Root has a lower fugacity
T (K) 111 Z \Y fugacity H U S
P (MPa) 0.1013 cm “/gmol MPa Jimol Jimol JimolK
answers for three 0.9666276 8806.5823 0.09802 -4736.595 -5628.701 6.759068
root region 0.0267407 243.6241 -6972.974 -6997.653 -26.6613
0.0036925 33.640918] 0.093712 -12954.48 -12957.88 -66.90221
State 8 State 6
Resuts — Resuks
methane methans
T 235 P(MPa) 01013 T(K) m P(MP&) 01013
z 0997674 7 0.956622 000359249
W (em*3imol) 241561 V¥ (cm'3mol) S806.4 336402
U (Jdmcd) 155348 U (Il -5628.7 12957 8
H (JAncd) 883589 H (Jimol) 4TI 59 129545
S (Jinol-K) 35 0663 S (dimol) £.75907 669023
fugacity (MPs) 04101064 fugacty (MPa) 0.0280197 0.0337025

Figure 8.6 Summary of enthalpy calculations for methane as taken from the files Preos.xlsx (above) and
PreosPropsMenu.m below.

Solution: Before we calculate the enthalpies of the streams, a reference state must be chosen.
The reference state is arbitrary. Occasionally, an energy balance is easier to solve by setting one
of the enthalpies to zero by selecting a stream condition as the reference state. To illustrate the
results let us select a reference state of /7 = 0 at the real fluid at the state of Stream 3 (6 MPa and
300 K). Because state 3 is the reference state, the /75 = (. The results of the calculations from the
Peng-Robinson equation are summarized in Fig. 8.6.

The fraction liquefied is calculated by the energy balance: mf{; = mgfg + mgH; then incorpo-
rating the mass balance: 15 = (1 — mg/my)Hg + (mgims)Hy.

The throttle valve is isenthalpic (see Section 2.13). The flash drum serves to disengage the liquid
and vapor exiting the throttle valve. The fraction liquefied is (1 — q) = mg/my = (H5 — Hg)/(Hg —
Hg) = (0 — 883)/(—12,954 — 883) = 0.064, or 6.4% liquefied. This is in good agreement with the
value obtained in Example 5.5 on page 213.




Example 8.10 Adiabatically filling a tank with propane

Propane is available from a reservoir at 350 K and 1 MPa. An evacuated cylinder is attached to
the reservoir manifold, and the cylinder is filled adiabatically until the pressure is 1 MPa. What is
the final temperature in the cylinder?

Solution: The critical properties, acentric factor and heat capacity constants, are entered on the

s” page of Preos.xlsx. On the “Ref State” page, the reference state is arbitrarily selected as
the real vapor at 298 K and 0.1 MPa, and H = 0. At the reservoir condition, propane is in the
one-root region with Z = 0.888, A = 3290 J/mol, U= 705 J/mol, and § = ~7.9766 J/mol-K. The
same type of problem has been solved for an ideal gas in Example 2.16 on page 82 however, in
this example the ideal gas law cannot be used. The energy balance reduces to I¥ = H™, where
H™ = 3290 Jimol. In Excel, the answer is easily found by using Solver to adjust the temperature
on the “Props™ page until U7 = 3290 J/mol. The converged answer is 381 K. In MATLAB, the
dialog boxes can be used to match U= 3290 J/mol by adjusting T In the MATLAB window,
note that the final 7 is shown in the “Results” box. The initial guess is preserved in the upper
left.

Current State Roots Stable Root has a lower fugscny

T(K) 381.365167] z v fugacity H u S

P (MPa) 1 cm*jgmol MPa Jimol  Jimol __ NmolK
& for 1 root region 0.9153077 2002.3034] 0.920298 6192.303 3280 -0.039259
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Example 2.16 Adiabatically filling a tank with an ideal gas

Helium at 300 K and 3000 bar is fed into an evacuated cylinder until the pressure in the tank is
equal to 3000 bar. Calculate the final temperature of the helium in the cylinder (Cp/R = 5/2).

Solution: The system will be the gas inside the tank at any time. The system will be an open,
unsteady-state system. The mass balance is dn = dn™. The energy balance becomes:

d(nU) = H"dn"" —H"‘?fﬁ"“’ +/§+ 7!_5“. +/ﬁ_vs

We recognize that H will be constant throughout the tank filling. Therefore, by hint 4@ from the
problem-solving strategy, we can integrate terms individually. We need to be careful to keep the
superscript since the incoming enthalpy is at a different state than the system. The right-hand
side of the energy balance can be integrated to give

f. . of . . .
J' H%n = B[ dn = H"0f —n'y = H™
i i
The left-hand side of the energy balance becomes

AUn) = UlnT—U'n’ = Ula!

Combining the result with the definition of enthalpy,
v’ = #" = v+ Py = U +RT™ (ig) 2.73
And with our definition of heat capacity, we can find temperatures:
AU = C(T7-T" = RT™"= T/ = T™R+C)/C, = 7*"'cp/cv (*ig)

Note that the final temperature is independent of pressure for the case considered here.




8.9 GENERALIZED CHARTS FOR THE ENTHALPY
DEPARTURE

As in the case of the compressibility factor, it is often useful to have a visual idea of how general-
ized properties behave. Fig. 8.7 on page 324 is analogous to the compressibility factor charts from
the previous chapter except that the formula for enthalpy is (H~ H'®) = (H— H®)" + a(H - H)'.
Note that one primary influence in determining the liquid enthalpy departure is the heat of vapor-
ization. Also, the subcritical isotherms shift to liquid behavior at lower pressures when the satura-
tion pressures are lower. The enthalpy departure function is somewhat simpler than the
compressibility factor in that the isotherms do not cross one another. Note that the temperature used
to make the departure dimensionless is T,. A sample calculation for propane at 463.15 K and 2.5 MPa
gives HE — Hf = [0.45 + 0.152(0.2)] (8.314) 369.8 = 1480 J/mole compared to 1489.2 from the
Peng-Robinson equation.
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Figure 8.7 Generalized charts for estimating (H — H®)/RT, using the Lee-Kesler equation of state.
(H — HEY'/RT, uses &= (.0, and (H — H€)\/RT, is the correction factor for a hypothetical
compound with @ = 1.0. Divide by reduced temperature to obtain the enthalpy departure
fumction.
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